Resonant tunneling through S- and U-shaped graphene nanoribbons.

نویسندگان

  • Z Z Zhang
  • Z H Wu
  • Kai Chang
  • F M Peeters
چکیده

We theoretically investigate resonant tunneling through S- and U-shaped nanostructured graphene nanoribbons. A rich structure of resonant tunneling peaks is found emanating from different quasi-bound states in the middle region. The tunneling current can be turned on and off by varying the Fermi energy. Tunability of resonant tunneling is realized by changing the width of the left and/or right leads and without the use of any external gates.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Theoretical Study of BN-Confined Graphene Nanoribbon Based Resonant Tunneling Diodes

The negative differential resistance (NDR) of resonant tunneling diodes (RTDs) enables their use in fast-switching applications and logic circuit designs. So far, RTDs have been realized in Si/SiGe or IIIV compound material systems. However, various emerging devices have been proposed and studied in the past two decades. Recently, graphene nanoribbons (GNRs) have attracted much attention as the...

متن کامل

Electron confinement induced by diluted hydrogen-like ad-atoms in graphene ribbons.

We report the electronic properties of two-dimensional systems made of graphene nanoribbons, which are patterned with ad-atoms in two separated regions. Due to the extra electronic confinement induced by the presence of impurities, we find resonant levels, quasi-bound and impurity-induced localized states, which determine the transport properties of the system. Regardless of the ad-atom distrib...

متن کامل

Anomalous length dependence of the conductance of graphene nanoribbons with zigzag edges.

Charge transport through two sets of symmetric graphene nanoribbons with zigzag shaped edges in a two-terminal device has been investigated, using density functional theory combined with the non-equilibrium Green's function method. The conductance has been explored as a function of nanoribbon length, bias voltage, and the strength of terminal coupling. The set of narrower nanoribbons, in the fo...

متن کامل

Comparison of Raman spectra and vibrational density of states between graphene nanoribbons with different edges

Vibrational properties of graphene nanoribbons are examined with density functional based tight-binding method and non-resonant bond polarization theory. We show that the recently discovered reconstructed zigzag edge can be identified from the emergence of high-energy vibrational mode due to strong triple bonds at the edges. This mode is visible also in the Raman spectrum. Total vibrational den...

متن کامل

A New Mechanism for THz Detection Based on the Tunneling Effect in Bi-Layer Graphene Nanoribbons

A new possible mechanism of signal detection in the THz range is investigated, based on the excitation of resonances due to the tunneling effect between two graphene nanoribbons. A simple detector is proposed, where two graphene nanoribbons are used to contact two copper electrodes. The terminal voltages are shown to exhibit strong resonances when the frequency of an external impinging field is...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanotechnology

دوره 20 41  شماره 

صفحات  -

تاریخ انتشار 2009